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ABSTRACT

Functional Near Infrared Spectroscopy (fNIRS) is a safe, low-cost, non-invasive opti-

cal technique to monitor focal changes in brain activity using neurovascular coupling and

measurements of local tissue oxygenation, i.e., changes in concentrations of oxygenated

hemoglobin (HbO) and deoxygenated hemoglobin (HbR)[42]. This thesis utilizes two fNIRS

approaches to measure hemodynamic changes associated with functional stimulation of the

human auditory cortex. The first approach, single-distance continuous wave NIRS (CW-

NIRS) utilizes relatively simple instrumentation and the Modified-Beer Lambert (MBL) law

to estimate activation induced changes in tissue oxygenation (∆CHbO and ∆CHbR)[17]. The

second more complex approach, frequency domain NIRS (FD-NIRS), employs a photon dif-

fusion model of light propagation through tissue to measure both baseline (CHbO and CHbR),

and stimulus induced changes in oxygenated and deoxygenated hemoglobin[10]. FD-NIRS is

more quantitative, but requires measurements at multiple light source-detector separations

and thus its use in measuring focal changes in cerebral hemodynamics have been limited.

A commercial FD-NIRS instrument was used to measure the cerebral hemodynam-

ics from the right auditory cortex of 9 adults (21 ± 35 years) with normal hearing, while

presented with two types of auditory stimuli: a 1000 Hz Pure tone, and Broad band noise.

Measured optical intensities were analyzed using both MBL and photon diffusion approaches.

Oxygenated hemoglobin was found to increase by 0.351 ± 0.116 µM and 0.060 ± 0.084 µM

for Pure tone and Broad band noise stimuli, when analyzed by the MBL method at the

vi
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‘best’ source-detector separation. On average (across all sources), MBL analysis estimated

an increase in CHbO of 0.100±0.075 µM and 0.099±0.084 µM respectively for Pure tone and

Broad band noise stimulation. In contrast, the frequency domain analysis method estimated

CHbO to increase by −0.401 ± 0.384 µM and −0.031 ± 0.358 µM for Pure tone and Broad

band noise stimulation respectively. These results suggest that although more quantitative,

multi-distance FD-NIRS may underestimate focal changes in cerebral hemodynamics that

occur due to functional activation. Potential reasons for this discrepancy, including the

partial volume effect, are discussed.

vii
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CHAPTER 1: INTRODUCTION

Functional activation is a powerful non-invasive technique for the in-vivo character-

ization of specific neuronal circuit/organization/activity in the brain. In humans, these

experiments involve the stimulation/activation of sensory and/or motor neuron clusters,

and the non- invasive measurement of corresponding electro physiological or hemodynamic

responses [15, 42, 22]. Functional characterization of motor neurons via finger tapping is

a classic example. Here, the subject ‘taps’ their thumb and index finger at a predeter-

mined rate (usually ∼ 3 Hz), which activates the corresponding neurons in the motor cortex.

The physiological effects of this activation is then characterized by measuring the electri-

cal/hemodynamic response. Several imaging/monitoring modalities have been used over the

decades to study the functional activity in the brain. Techniques such as Electroencephalog-

raphy (EEG) [11, 37] directly measure the electrical de-/re-polarizations of the neurons,

while methods such as functional Magnetic Resonance Imaging (fMRI)[16] Single photon

emission computed tomography (SPECT) [28], Positron emission tomography (PET) [34],

Computed tomography(CT) [33], and Near-Infrared Spectroscopy (NIRS) [43, 27, 11] mea-

sure the hemodynamic (i.e., blood flow/blood oxygenation) changes associated with neuronal

activation (i.e., via neurovascular coupling [38, 22]).

In this thesis we characterize the functional hemodynamic response from the auditory

cortex, with a long-term goal to investigate the differences in auditory hemodynamic re-

1
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sponses from individuals with, and without tinnitus. Tinnitus is a common hearing problem

that effects 1 in 10 people in the United States [5]. Tinnitus refers to the perception of ‘noise’

or ‘ringing’ in the ears, and could signify underlying hearing conditions such as hearing loss

or ear injury. Some recent studies have shown increased functional activity in regions of

auditory cortex in people suffering with tinnitus compared to those without tinnitus [39, 27].

It is generally difficult to measure hemodynamic response to activations of the auditory cor-

tex with clinical imaging modalities such as fMRI or CT, because instrument sounds can

corrupt/influence presentation of auditory stimuli to the subjects. In this context, the op-

tical technique of Near Infrared Spectroscopy (NIRS) provides an effective, silent and non

invasive way to measure hemodynamic responses from controlled stimulation of the auditory

cortex. NIRS has several other inherent advantages. First, optical imaging modalities have

significantly low setup and operating costs. Second, optical imaging methods are portable

and easy to use, making it an ideal choice for bedside monitoring. Finally, optical irradiation

is non-ionizing and safe to use.

NIRS estimates the concentrations of oxygenated/deoxygenated hemoglobin (and hence

tissue oxygen saturation), from the differential absorption of light of different wavelengths

by components of tissue (e.g., oxy- or deoxy- hemoglobin, lipids, water). The most com-

mon and simplest implementation of NIRS is Continuous Wave Near-Infrared Spectroscopy

(CW-NIRS), where tissue is illuminated by multi-wavelength near-infrared light of constant

(i.e., continuous) intensity. The absorbance/attenuation of the diffusely reflected light is

measured, and changes in oxygenated and deoxygenated hemoglobin is estimated by the

modified Beer-Lambert law [9, 3, 17]. CW-NIRS thus offers a fast and convenient method for

measuring functional changes, with several studies utilizing commercial NIRS instruments to

2



www.manaraa.com

characterize stimulation of the auditory cortex [27, 24, 11, 43]. For example Chen et.al. [11],

used a NIR Scout 816 (NIRx Medical Technologies, LLC) device to study the responses of the

auditory cortex for 2 different types of sounds: pure-tone at 440 and 554 Hz and a 1000 Hz

frequency modulated wave that produced a ‘warbling Sound’. Hong and Santosa [24] used

DYNOT (NIRx Medical Technologies, LLC) to study the hemodynamic responses of the

auditory cortex for four different types of sound categories, which included English, Non-

English, annoying and nature sounds. Notably, all these studies utilize CW-NIRS and the

Modified Beer-Lambert (MBL) law which only nominally accounts for scattering of light

in tissue [11], and can only measure relative changes in the concentration of oxygenated

hemoglobin (HbO) and deoxyenated hemoglobin (HbR).

A second, and more quantitative approach to measuring cerebral hemodynamics is

Frequency Domain NIRS (FD-NIRS), which utilize intensity modulated light of different

near-infrared wavelengths to derive both tissue absorption and tissue scattering properties.

Here, tissue is illuminated with light, the intensity of which is modulated sinusoidally (∼ 100

MHz), and the phase and amplitude changes of light propagated through tissue (with respect

to illumination) is measured at different source-detector separations. When combined with

a photon diffusion model, the simultaneously measured amplitude and phase changes per-

mit quantification of both tissue absorption and scattering coefficients. However, although

FD-NIRS has been used to measure absolute changes in the HbO and HbR concentrations

in the brain [12, 21, 10, 31], they have primarily focused on global changes such as hypoxia

and cerebral ischemia. Indeed, there is very little literature on the use of these quantita-

tive techniques for functional activation experiments to measure focal changes in absolute

concentrations of HbO, HbR.

3
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1.1 Research Question

The goal of this thesis is to measure the absolute (i.e, baseline) as well as relative

changes in HbO and HbR during the functional activation of the auditory cortex with FD-

NIRS and CW-NIRS respectively. We use a commercial frequency domain NIRS system

(Imagent, ISS inc., IL, USA) to measure the functional activation over the auditory cortex

region. Relative changes in HbO and HbR concentrations are calculated using the modified

Beer-Lambert law, under the assumption that light scattering increases the path length of

light traveled in tissue by a constant value. Note that the Modified Beer-Lambert (MBL)

analysis uses the Ac component and/or the DC component of the light fluence rate (i.e.,

intensity) measured from the Imagent system. Absolute (i.e., baseline) values of HbO and

HbR concentrations are calculated by quantitatively measuring the tissue absorption and

scattering coefficients. This is accomplished by measuring both amplitude and phase changes

(w.r.t a reference) collected from the FD-NIRS system. Measured amplitude and phase

permit full characterization of the photon diffusion through tissue thus enabling quantitative

measurements. We analyze and compare the results obtained from both analysis methods

for 9 subjects and identify and discuss the inconsistencies in the results.

1.2 Thesis Organization

The remainder of this thesis is organized thusly. Chapter 2 provides the underlying

fundamentals of different NIRS approaches and the mathematics involved for these mea-

surements. The different types of optical sources, the assumptions made therein for the

consideration of the measurement geometry, and different analysis techniques are elabo-

rately discussed. Chapter 3 discusses the technical details and experimental methodology

4
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of the system. The experimental set up and protocol used for the measurements in this

thesis, including instrument description, the type stimuli presented, technical details of the

fiber-optic probe and the positioning of the probe are described. A flow chart is provided

for the both analysis methods. Chapter 4 summarizes the results obtained for the different

types of stimuli used and for the two different analysis techniques. The results from the two

analysis techniques is compared for their consistency(or)inconsistency. The challenges faced

during the experiments are also discussed. Finally, chapter 5 presents concluding thoughts

of this research and discusses future work.

5



www.manaraa.com

CHAPTER 2: FUNDAMENTALS OF DIFFUSE OPTICAL

SPECTROSCOPY

2.1 Tissue Spectroscopy

Diffuse optical spectroscopy (DOS) is a low cost optical technique to quantitatively

measure tissue chromophore concentrations. More specifically, DOS characterizes the prop-

agation of light through tissue and measures/estimates tissue optical properties, i.e., ab-

sorption and scattering coefficients. Absorption refers to the transfer of energy from light

to (typically) heat in tissue. Scattering refers to the change in direction of propagation of

light due to (typically elastic) collision with tissue components such as cells. Thus, tissue

light scattering has the effect of increasing the total distance light propagates in a tissue,

permitting deep - tissue interrogation with sources and detectors placed on the surface.

Formally, DOS quantifies tissue optical properties in the form of absorption (µa), and

reduced scattering coefficients, (µ′s). Tissue absorption coefficient, µa, is defined such that

1/µa is the average distance traveled by light in the tissue before it is absorbed. Thus, µa

represents the probability for the photon to be absorbed per unit length traveled [6, 19]. In

a similar way, tissue scattering coefficient, µs, represents the probability of photon scattered

per unit distance traveled, i.e., 1/µs is average distance traveled by the photon before it’s

direction changes due to scattering. A related quantity is the tissue reduced scattering

coefficient, µ′s, which accounts for both the scattering length as well as the direction. 1/µ′s

6
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is the average distance traveled by the photon before its direction is randomized.

µ′s = µs(1− g) (2.1)

Eq. 2.1 gives the relation between tissue scattering and reduced scattering coefficients, where,

g is the anisotropy factor that characterizes the distribution of scattering angles. g = 0

indicates isotropic scattering i.e., all angles are equally probable. g = 1 and g = −1 denote

fully forward/back scattering respectively. Note that tissue is mostly forward scattering with

g ≈ 0.91.

The goal of tissue optical spectroscopy is to quantitatively measure the concentrations

of tissue chromophores (typically oxygenated and deoxygenated hemoglobin), and changes

therein due to events such as functional activation. The absorption of light in tissue is

determined by the concentrations, and absorption cross-sections of chromophores in the

tissue.

µa = 2.303
∑
i

(εi(λ)Ci) (2.2)

where εi(λ) M−1cm−1 is the molar extinction coefficient of the ith chromophore at wave-

length λ, and Ci is the concentration of the ith chromophore in M . In the near infrared

(NIR) wavelengths (650 nm − 950 nm) absorption of light by human tissue is dominated

by oxygenated hemoglobin (HbO), deoxygenated hemoglobin (HbR). Other tissue chro-

mophores such as fats, lipids, melanin, and water also absorb light, albeit to a lesser extent.

Fig. 2.1 shows the relative absorption of tissue chromophores such as oxygenated hemoglobin

(HbO), deoxygenated hemoglobin (HbR), water and fat in the NIR region. In order to esti-

mate the concentrations, CHbO and CHbR, tissue spectroscopy techniques estimate µa at at

least two wavelengths. The concentrations of non hemoglobin moieties can be estimated by

7
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Figure 2.1: Optical properties of typical chromophores in tissue highlighting low absorption in the
NIR spectral window (700−900 nm). Light in this part of the spectrum can penetrate several cen-
timeters through skin and tissue, permitting deep-tissue measurements from optical measurements
on the surface [18, 35, 36]

including measurements of µa from an additional wavelengths, with additional instrument

cost and complexity. Alternatively, one could measure [6], or assume concentrations of non

hemoglobin chromophores (that typically do not change during functional activation), and

‘correct’ experimentally measured values of µa. Indeed, it is common to assume a water

volume fraction of 70% and incorporate the effect of water absorption in the Eq.2.2 as [3]

µcorrecteda (λ) = µmeasureda − µwatera (2.3)

Fig. 2.2 shows a classic setup for non invasive DOS measurement of cerebral hemo-

dynamics. An optical fiber is used to direct light from a laser diode of wavelength in NIR

region to a ‘source position’ on the surface of the scalp. The light propagates through the

tissue and undergoes a series of absorption and scattering events; a fraction of the light that

interacts with the tissue is reflected back to the tissue surface, where it is detected using an-

other optical fiber at the ‘detector position’. The shaded region depicts an approximation of

the paths taken by photons as they travel from the source position to the detection position.

8
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Figure 2.2: Example of the DOS measurement using a single source detector separation. Shaded
region indicates most probable photon trajectories and thus a measure of the sampling volume of
DOS measurements.

This diffusion of light through tissue, permits interrogation of tissue components/regions

at depths ranging from millimeters to centimeters below the scalp. The detected light is

attenuated by both absorption and scattering events occurring inside the tissue. Thus, we

need a mathematical model of light transport to quantitatively measure the probability of

interaction of photon due to absorptive and/or deflective behavior. Note however that tissue

components such as blood primarily impact changes in the tissue absorption coefficient only

(Eq. 2.2), and not scattering coefficients [6].

2.2 Photon Diffusion Equation

The propagation of light through a tissue can be modeled as a diffusion process and as

such described using a Photon Diffusion Equation [9, 4, 19].

∇[D(r, t)∇φ(r)]− vµa(r, t)φ(r, t)− ∂φ(r, t)

∂t
= vS(r, t). (2.4)

Here, φ(r, t) is the photon fluence rate at tissue position r in units of W/cm2, D(r)

is the photon diffusion coefficient defined as D = v/3(µ′s(r) + µa(r)) in units of cm2/s,
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µa(r) and µ′s(r) are the position dependent absorption and reduced scattering coefficients

of the tissue in cm−1,and v is the speed of light in tissue in cm/s. S(r, t) is the source

term determining the amount of light illumination in tissue. If we assume that the optical

properties are assumed to be uniformly distributed in tissue, i.e., tissue is homogeneous,

Eq. 2.4 can be simplified to

D∇2φ(r, t)− vµaφ(r, t)− ∂φ(r, t)

∂t
= vS(r, t). (2.5)

The photon diffusion equation is derived as an approximation from radiative transport

theory [6], and it is important to note the conditions where it is appropriate to apply it

to describe tissue light propagation [19]. Most importantly, diffusion theory is valid only in

tissue that is dominated by scattering, i.e., µ′s > µa. For cerebral tissues µa ≈ 0.1−0.2 cm−1,

and µ′s ≈ 7− 10 cm−1. Diffusion theory also assumes that the direction of light in tissue is

randomized. This validity condition places a limit on the source-detector separations where

diffusion can be applied. As a rule of thumb, the source-detector separation, ρ, should be

greater than three times the tissue mean free path, i.e., ρ > 3
µ′s

. Finally, we assume that the

rate of temporal changes in fluence rate are slower than the speed of light.

2.2.1 Types of DOS Sources

Practical implementation of Diffuse Optical Spectroscopy, via solutions to Eq. 2.5 or

Eq. 2.4, requires definition of the source term. For any implementation, we are required

to use equal or more number of wavelengths than the number of chromophores. The three

typical implementations of DOS are:

1. Continuous Wave Near Infrared Spectroscopy (CW-NIRS)

2. Frequency Domain Near Infrared Spectroscopy (FD-NIRS)

10
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Figure 2.3: Three types of sources for DOS/NIRS measurement. 1. Continuous wave DOS or
NIRS, where tissue is illuminated with a source of light at constant intensity. The changes in the
detected intensity are used to compute the changes in the absorption and scattering properties of
the tissue.2. Frequency Domain DOS, where tissue is illuminated with light sources whose intensity
is modulated at a specific (RF) frequency. The changes in the phase shift and attenuation of the
detected intensity (w.r.t source) are used to compute the absolute values of tissue optical properties.
3. Time domain DOS, where tissue is illuminated with a pulsed (femto or pico-second) light source.
The photon arrival times of the detected light are used to compute the absolute tissue optical
properties. Adapted from [19].

3. Time domain Near Infrared Spectroscopy (TD-NIRS)

Time domain (or time-resolved) measurements, involve use of multiple near infrared

light sources to launch short light pulses into the tissue and measure the time of flight of

the detected photons from the tissue. Tissue acts as a low pass filter, which has the effect of

broadening the input pulses; the shape of the broadened pulse can be fit to a time-resolved

solution to Eq. 2.5 to compute tissue optical properties, from measurements are only one

source-detector separation [3, 41, 32] . Although this method provides an avenue to calculate

the absolute properties, the complexity of instrumentation and the cost involved, make time

domain methods practically difficult to implement. Time domain NIRS is not used in this

thesis and is included here for only completeness.

A simpler, and comparatively less expensive alternative is Frequency Domain Near

Infrared Spectroscopy, where tissue is illuminated with intensity modulated light. Measure-

11
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ments of the amplitude and phase changes at multiple source-detector separations (w.r.t the

source modulation) are used to compute tissue optical properties. Note that the frequency

domain and time domain methods are related via the Fourier transform. The frequency

domain method is described in greater detail in Sec 2.4. The final, and simplest, imple-

mentation of DOS is Continuous Wave NIRS. Continuous wave DOS can be thought of as a

limiting case of the frequency domain approach with modulation frequency set to zero. Here,

tissue is illuminated by light of constant intensity from multiple wavelengths. CW NIRS is

described in greater detail in Sec 2.3. The motive of this thesis is utilization of Continu-

ous Wave and Frequency Domain measurements for the measurement of optical properties

in functional activation measurements. These two techniques are briefly explained in the

following two sections.

2.3 Continuous Wave DOS or Near Infrared Spectroscopy (NIRS)

Continuous Wave Diffuse Optical Spectroscopy, typically referred to as Near Infrared

Spectroscopy (NIRS), is the simplest implementation of tissue spectroscopy. CW-NIRS

utilize light sources which emit light at a constant amplitude to illuminate the tissue. In this

modality, the DC component of the attenuated light is collected at the detector. Solving

Eq. 2.5 for continuous wave source in a homogeneous semi-infinite media we have

φcw =
vS0

4πDρ
exp

(
−
√
vµa
D

ρ

)
(2.6)

It is difficult, almost impossible, to quantitatively determine/separate the optical properties

from CW-NIRS measurements even with multiple source detector separations [2]. In par-

ticular, we cannot separate the attenuation effects of absorption from scattering. Thus, to

measure µa from the CW measurement, values of the tissue scattering coefficients µ′s are
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Figure 2.4: The propagation of light in a non scattering or homogeneous medium slab of thickness
ρ. I0(λ) is the intensity of light incident on the medium and I(λ is the attenuated light intensity
after being absorbed by medium

typically assumed. As a result, to appropriately account for tissue scattering effects and

solve for changes in tissue absorption, we use of an alternative and a simple approach to

solve the CW measurement, known as the Modified Beer-Lambert law. Using this method,

researchers [24, 43, 23] were able to measure the temporal hemodynamic changes due to

auditory stimulations at even a single distance CW measurement. The attenuation of light

(or other electromagnetic radiation) through non-scattering homogeneous media is described

by the Beer-Lambert law.

I(λ) = I0(λ) exp (−µa(λ)ρ) (2.7)

where I0 is the intensity of the light source, I is the intensity of light measured after it has

traveled a distance ρ through homogeneous media. Beer Lambert law holds true for non

scattering media (µ′s = 0), and for dilute solutions (Fig.2.4).
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Figure 2.5: Representation of the propagation of light in a scattering medium.(a) The propagation
of light in a scattering or dilute medium slab of thickness ρ- transmission geometry. (b) The
different paths of propagation of light through a semi infinite homogeneous tissue with scattering
taking place at each collision.

The Beer Lambert law in Equation 2.7 can be rewritten in the form of molar extinction

coefficients (ε(λ)) and concentration of the chromophores (C) in the media.

OD = − log

(
I(λ)

I0(λ)

)
= µa(λ)ρ

= Σi(εi(λ)Ci)ρ (2.8)

In a scattering medium, attenuation of light occurs both due to absorption (energy is

absorbed by the medium along the light path) and scattering (energy is scattered away from

the light path). Thus, Eq. 2.8 cannot be applied directly to measure tissue absorption. To

account for scattering, we use the modified Beer-Lambert law (MBL) which is an extension

of the Beer-Lambert law to turbid media with high absorption and scattering properties.

Briefly, the modified Beer-Lambert law employs a new parameter Differential Path length

Factor (DPF), in order to account for the change in path of the light due to scattering in

tissue. The Modified Beer-Lambert law relates the change in optical density to the change
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in tissue absorption

∆OD(λ) = − log

(
I(ρ)

I0(ρ)

)
' ∆µa(λ)DPF (λ) (2.9)

where, ∆OD(λ) is the change in optical density, DPF (λ) is the differential path length

factor, rho is the source detector separation, and ∆µa(λ) is the change in tissue absorption

coefficient.

In contrast to the Beer-Lambert law (Eq.2.7), where we measure the absolute absorp-

tion coefficient, with Modified Beer-Lambert law (Eq.2.9) we measure the changes in the

absorption co-efficients [30, 14]. Using the Modified Beer Lambert law we measure the dif-

ferential optical density and convert these changes in the intensity to the relative changes in

the concentration of tissue chromophores. This is represented by the simplified equation in

Eq. 2.10

∆OD(λ) = Σi

(
εi(λ)∆Ci(λ)DPF (λ)ρ

)
(2.10)

where εi(λ), Ci(λ) are molar extinction co-efficients and concentration of the ith chromophore

at wavelength λ respectively. The Differential Pathlength Factor can be calculated based

of assumed baseline tissue optical properties [6], experimentally measured with pulsed-time

techniques [35], or with Monte-Carlo simulations [25, 30]. For the auditory functional activa-

tion measurements in this thesis, we assumed DPF to be 5.86 and 6.51 for measurements at

wavelengths 830 nm and 690 nm respectively [17]. As DPF is a ratio, it is a dimensionless

quantity. It must be noted that one of the drawbacks of the CW- NIRS system is its inability

to measure the absolute absorption and scattering coefficients as it can only measure the

relative changes. Nonetheless, CW-NIRS is still the most commonly used technique to study
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functional activation [27, 11, 24] as it is economical and has simple instrumentation. Some

of commercial CW-NIRS systems include CW-6 (Techen Inc.), ETG-4000 (Hitachi Medical

co.) and NIRScout (NIRx Medical Technologies LLC).

2.4 Frequency Domain Diffuse Optical Spectroscopy

Frequency Domain Diffuse Optical Spectroscopy(FD-DOS) instruments utilize NIR

light sources whose intensity is sinusoidally modulated in the range of ∼ 100 MHz or more [1,

7, 40]. This sets up a diffusive photon density wave (DPDW) in the tissue at the modulation

frequency, the wave-vector of which (characterized from the phase shift and amplitude of the

detected light) is used to estimate tissue optical properties. In general, FD-DOS systems are

more complex and expensive than the CW system, but the additional information obtained

therein makes it a worthy trade-off. Furthermore, since FD systems measure light only at the

modulation frequency, they tend to be less sensitive to the stray room light. However, since

FD-DOS measurements are dependent on the absolute values of measured intensity, they

can be more sensitive to the light leakage from the sources and to the optical fiber coupling

with tissue. This latter issue is often solved by a calibration process which is explained in

detail in Sec. 3.3.1.

Conventionally, FD-DOS systems utilize two phase-sensitive demodulation techniques [6,

31, 17]. The first, homodyne detection, mixes the detected light (signal) with the in-phase

and phase-shifted RF modulation frequency of source (reference), to measure the in-phase

and quadrature components of the detected light (with reference to the source) respectively.

Thus the phase, and amplitude of the DPDW is estimated with RF electronics. The second

approach, heterodyne detection, converts the detected signal to a lower frequency (in KHz),
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by mixing the detected light (signal) with a frequency shifted reference. Lock-in techniques

are then used to estimate the phase and amplitude of the DPDW. The device used in this

thesis utilizes heterodyne demodulation with a cross correlation or ‘beat’ frequency of ∼ 5

KHz. Finally, amplitude and phase of the DPDW is conventionally measured at multiple

distinct source-detector separations; amplitude decreases exponentially with distance, and

phase increases linearly with distance [6, 31, 10, 21].

We now briefly review the mathematical underpinnings behind FD-DOS. The differen-

tial equation for the Diffuse Photon Density Wave (DPDW) can be derived from the Photon

diffusion equation (Eq.2.4), by substituting for a sinusoidally modulating source term, i.e.,

S(r, t) = Sdc + Sac exp (−iωt) . The resulting DPDW equation for homogeneous medium is

given by [6, 7, 40] (
∇2 − κ2

)
φ(r) = − v

D
Sac. (2.11)

where, κ is the complex wave-vector of the DPDW defined by κ2 = (vµa − iω) /D, ω is the

source modulation frequency, and Sac is the amplitude of the source modulation. As before,

µa and D are the tissue absorption and photon diffusion coefficients respectively, and φ(r) is

the fluence rate of light at position r in tissue. The solution to Eq. 2.11, for a homogeneous

semi-infinite geometry and an extrapolated zero boundary condition [6, 19], can be derived

using a Greens’ function approach. The measured fluence rate φFD(ρ, z = 0), at the tissue

surface z = 0 and a source-detector separation of (ρ) is given by

φFD(ρ, z = 0) =
vS0

4πD

(
exp(−κr1)

r1
− exp(−κrb)

rb

)
z=0

(2.12)

where r1 =
√
ρ2 + (z − ltr)2), rb = 2

√
ρ2 + (z + ltr + 2zb)2) are the origination points of

two spherical waves (source and image) that combine to provide zero fluence rate at the
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extrapolated zero boundary zb = 2(1+Reff )/3µ
′
s(1−Reff ), φ(ρ, zb) = 0. Reff is the amount

effective reflection coefficient of the tissue-air boundary, ltr ≈ 1/µ′s is the photon mean

free path, and S0 is the amplitude of the source fluence. When considering source-detector

separation much larger than the mean free photon transport path, i.e., ρ � ltr, Eq. 2.12

simplifies to

φFD(ρ) ≈ vS0

4πD

eiκρ

ρ2
[−2iκ(ltrzb + z2b )]

= A(ρ)eiθ(ρ) (2.13)

Here θ(ρ) and A(ρ) are the phase and amplitude of the light detected from the tissue. Eq. 2.13

can further be linearized to arrive at [19]

log
(
A(ρ)ρ2

)
= −κiρ+ A0, (2.14)

and

θ(ρ) = κrρ+ θ0 (2.15)

where, κr and κi are the real and imaginary parts of the complex DPDW wave vector κ.

From Eq. 2.14 and Eq. 2.15, it is readily apparent that the amplitude exponentially decreases

with source detector separation, and phase linearly increases with source detector separation.

Fig. 2.6 shows the plot of amplitude and phase versus the source detector separation.

Thus, measurements of DPDW amplitude and phase at multiple source detector sepa-

rations permit the estimation of the slopes κi and κr. Indeed, it is straightforward to show

that κi and κr are directly related to the tissue optical properties.

κr =

µav
2D

√1 +

(
w

vµa

)2

+ 1

1/2

(2.16)
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Figure 2.6: Relationship between amplitude and phase with source detector separation ρ. (a)
log(A(ρ)ρ2) versus source detector separation ρ with slope −κi. (b) Phase θ(ρ) versus the source
detector separation ρ with slope κr.

κi =

µav
2D

√1 +

(
w

vµa

)2

− 1

1/2

(2.17)

From Eqs. 2.16 and 2.17, it is straight-forward to estimate µa and µ′s from the slopes κr and

κi

µa =
ω

2v

(
κi
κr
− κr
κi

)
(2.18)

µ′s =
2v

3ω
κiκr − µa

≈ 2v

3ω
κiκr (2.19)

Finally, the concentrations of the tissue chromophores are estimated from µa estimated at

different wavelengths, as previously described in Sec. 2.1
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CHAPTER 3: INSTRUMENTATION AND METHODS

3.1 Frequency Domain Diffuse Optical Spectroscopy Instrument

A commercial Frequency-Domain Diffuse Optical Spectroscopy instrument, Imagent

(ISS, Inc., IL, USA), was used in this study to measure functional activation from the

auditory cortex. Briefly, the Imagent system utilized for this study consists of 64 light

sources (laser diodes) split evenly between two wavelengths 690 nm and 830 nm. Imagent

utilizes a time multiplexing scheme to differentiate optical signals from each source. Thus,

with 32 laser diodes for each wavelength, the instrument can be implemented to illuminate

up to 32 independent source positions. The average power of the laser diodes is ∼ 10 mW,

which is less than the ANSI limits of light-skin illumination [44].

The light sources are modulated at a frequency of 110 MHz. Thus, the output light

intensity of the laser diodes can be modeled as I(t) = IDC0 + IAC0 sin(2πft− φ0), where I(t)

is the intensity modulated intensity of the source (mW/cm2), f is the source modulation

frequency (i.e., 110 MHz, φ0 is the initial phase of source intensity modulation, IDC0 and

IAC0 are the average and alternating component of the light source intensity respectively.

Imagent also consists of 8 detectors (photomultiplier tubes, labeled A through H), with

individually controllable gains. Light detected by the photomultiplier tubes is amplified,

and the amplitude and phase of the detected light intensity (with reference to the source

modulation) is measured via analog heterodyne demodulation [6, 26, 20]. Imagent uses a
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Figure 3.1: ISS Imagent, a commercial frequency domain-Diffuse Optical Spectroscopy instrument.

‘beat’ or ‘cross-correlation’ frequency of 5 KHz. Illumination of tissue, and detection of

diffusely reflected light from tissue is accomplished via inert optical fibers. Specifically,

multi-mode step-index fibers with a core diameter of 400 µm were used for illumination,

while detection was realized by multi-mode fiber optic bundle with a total core diameter of

3 mm. Acquisition of amplitude and phase at each detector is implemented with a built-in

USB data acquisition unit, and software (BOXY).

3.1.1 Instrument and Fiber Optic Setup

The current study utilized 8 laser diodes (4 each at 830 nm and 690 nm), arranged to

illuminate the tissue at 4 source positions. Light reflected from the tissue was detected at 8

detector positions using the 8 photomultiplier tubes on the Imagent. The data acquisition

software was setup to record data from all detectors in parallel, with the source laser diodes

time-multiplexed to switch ‘ON’ in sequence, which permitted a sampling rate of ∼ 10 Hz

(data collection rate). A custom probe (manifold) was 3D printed (Protolabs Inc.) to hold
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Figure 3.2: (a) A schematic diagram of manifold that functioned as a custom fiber optic probe. It
has 8 detectors (A through H) and four overlapping source positions for λ = 690 nm (1 through
4), and for λ = 830 nm (5 though 8). (b). The 3D-printed manifold (Protolabs Inc.) used.

the source and detector fibers at their desired separations.The arrangement of source fibers

and detector fibers on the probe is shown in Fig. 3.2. Note that physical positions of

sources 1 through 4 (λ = 690 nm), and 5 though 8 (λ = 830 nm) overlap on the probe.

This arrangement is practically realized via a custom bifurcating fiber, with the distal ends

connected to the respective laser diodes on the Imagent and the proximal end connected to

the desired source position on the probe. Tab. 3.1 highlights the distances between the each

source and detector position used in the custom fiber optic probe.
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Table 3.1: Source-detector separations realized by the custom fiber optic probe. The schematic of
the probe is shown in Fig. 3.2. All distances are in cm.

Detectors

Sources
1 and 5 2 and 6 3 and 7 4 and 8

A 2.183 2.866 3.772 4.554

B 1.610 2.081 2.882 3.625

C 3.638 2.880 2.076 1.616

D 4.568 3.769 2.864 2.193

E 2.183 1.610 3.638 4.568

F 1.610 2.081 2.882 3.625

G 3.638 2.880 2.076 1.616

H 4.568 3.769 2.864 2.193

The average source-detector separation is ∼ 3 cm, which is in line with prior fNIRS

studies on functional activation of the auditory cortex [24, 27, 11]. The outputs obtained

from the system , viz., modulation (AC), average (DC) and phase (φ) for each source detector

separation, was stored in the computer for post-processing (Sec. 3.2 and 3.3).

3.1.2 Subjects

Nine healthy adults with normal hearing participated in this study: six females (aged

20±30 years) and three males (aged 25±35 years). All participants were informed about the
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Figure 3.3: The International 10-20 system describing the location scalp electrodes.

experimental details/protocols and completed an approved informed consent form per the

Institutional Review Board at the University of South Florida. All the subjects were tested

for normal hearing via an auditory screening process including a hearing test, a tone test

and a pressure test. Optical measurements were performed over the right auditory cortex.

3.1.3 Experiment Protocol

All experimental protocols, auditory stimuli and instruments were approved by the

Institutional Review Board(CR5 Pro00011325) of the University of South Florida. The

Imagent fNIRS system was warmed up for ∼ 10 min prior to the measurement, and testing

was conducted in a sound proof booth with dimmed lights to avoid interference of eternal

lights and sounds. Subjects were seated comfortably on a reclining chair, with the fiber-optic

probe affixed to their head above the auditory cortex.
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Figure 3.4: Placement of the probe on the T4 location above the Tragus on subject during an
experiment

More specifically, the international 10− 20 system was used to guide probe placement

over the auditory cortex [29]. It is generally understood that the auditory activation area

in the human cerebral cortex is above the Tragus and around the T4 region [27, 43, 24, 11].

Here, we placed the probe on the head such that the sources lie on either side of T4 position.

For accurate localization of the T4 position on a subjects head, the diameter of the head, the

distances from Inion to Nasion and from right Tragus to the left Tragus were measured. The

T4 position was identified to be 10% of the distance between right Tragus to the left Tragus

towards the center of the head (see Fig. 3.3). The probe was fixed in position using the

velcro straps, as shown in Fig. 3.4. By positioning the center of the sources (and the probe)

over the T4 position, and having detectors on either side of the sources, we are well placed

to be sensitive to hemodynamic changes over the entire auditory cortex. In particular, we

expect a higher response in the regions of detectors A, B, E, and F [43, 37, 23, 11, 24].

After the probe has been positioned on the subject, two different auditory stimuli, a

1000 Hz pure-tone and Broadband noise, were presented bilaterally via insert ear phones
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Figure 3.5: The protocol used for the functional activation experiment. A 1 min of baseline
measurement, followed by 20 presentations of the 10sec stimuli and 30 sec resting period. The
duration one experiment consisting of 20 trials lasted for 14 min.

(ER-2, Etymotics Inc., FL). The auditory stimuli were generated using SigGen through

a TDT-RP2 (Tucker Davis Technologies, Alachua, FL) signal processor at 70 db sound

pressure level (SPL). Each stimuli was presented 21 times (10 s stimulus followed by rest

period of 30 s). Fig. 3.5 shows an outline of the experimental protocol. The entire experiment

for one stimuli took about 14 min, including a 60 s baseline prior to stimuli presentation.

Throughout, average light intensity (dc), amplitude (ac) and phase (φ) were continuously

recorded, along with a marker of the stimulus presentation. Amplitude and phase data

were analyzed with custom MATLAB scripts (Mathworks Inc., Natick, MA), using both

the modified Beer-Lambert approach (Sec. 3.2), and the multi-distance FD-DOS method

(Sec. 3.3), to compute the hemodynamic changes due to auditory stimulation.

3.2 Measurement of Optical Properties Using Modified Beer-Lambert Analysis

The light intensities (ac) measured for each source-detector separation (Tab. 3.1) was

used to compute the change in concentrations of oxygenated and deoxygenated hemoglobin

due to functional activation. Fig. 3.6 describes the step by step process for the Modified Beer-
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Lambert analysis of the recorded data, based on the theories described previously (Sec. 2.3).

All processing steps were implemented in MATLAB (Mathworks, Natick, MA). Briefly, the

average intensity data for each detector (and each source-detector separation) were first low

pass filtered (cut off frequency of 0.1 Hz [24]) to remove pulsatile signals due to the heart

rate and respiration.

Figure 3.6: The process flow in a Modified Beer-Lambert approach for the measurement of concen-
tration.

The filtered and motion artifact-corrected data is then analyzed using the Modified

Beer-Lambert law (Sec. 3.2), to estimate changes in concentrations of the oxygenated and

deoxygenated hemoglobin. For the two wavelengths being used in our case, Eq. 2.10 can be
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rewritten in matrix format for ease of computation.

[
∆OD(λ1)
∆OD(λ2)

]
=

[
εHbO(λ1)DPF (λ1)d εHbR(λ1)DPF (λ1)d
εHbO(λ2)DPF (λ2)d εHbR(λ2)DPF (λ2)d

]
.

[
∆CHbO
∆CHbR

]
(3.1)

Eq. 3.1 can be readily inverted to compute ∆CHbO and ∆CHbR in mol/ l. Here, λ1 =

690 nm, λ2 = 830 nm, d is the source-detector separation of the measurement in cm, and

DPF (λi) is the differential path length factor for wavelength λi. εHbO/R(λi) is the molar

extinction coefficient of theHbO/HbR at wavelength λi in cm−1/mol [36]. Changes in optical

density (∆OD) in Eq. 3.1 were calculated on a trial-by-trial basis, with the average measured

intensity 5 s before the auditory stimulus being used as baseline. Prior to application of the

modified Beer-Lambert law, OD time courses were processed to remove motion artifacts[8].

A moving standard deviation filter (n = 4) was first applied to the OD data to calculate the

local variance; motion artifacts were then identified as regions in the signal with high local

standard deviation (threshold� 2.0). Trials with significant motion artifacts were excluded

from the analysis. Changes in CHbO and CHbR were then computed with DPF (690 nm) =

5.86 and DPF (830 nm) = 6.51 [17]. Finally, stimulus induced changes ∆CHbO and ∆CHbR

from all presented trials were averaged to arrive at the results for each subject. Note that

the modified Beer-Lambert analysis estimates hemodynamic changes for each source-detector

separation, i.e., 4 curves for each detector.

3.3 Measurement of Optical Properties Using Photon Diffusion Equation

The amplitude (ac) and phase (φ) of light intensities measured at each detector as

a function of source-detector separation (Tab. 3.1) was used to compute the absolute con-

centrations of oxygenated and deoxygenated hemoglobin due to functional activation. The

data analysis process is summarized in Fig. 3.7, based on the multi-distance FD DOS meth-
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ods described in Sec. 2.4. All processing steps were implemented in MATLAB (Mathworks,

Natick, MA).

Figure 3.7: The process flow in a multi-distance FD-NIRS approach for the measurement of con-
centration.

Amplitude and phase data were pre-processed (low pass filter, motion artifact correc-

tion) using methods similar to those described in Sec. 3.2. The pre-processed amplitude

and phase measurements at each wavelength were ordered as a function of source-detector

separation for each detector. Recall from section 2.4, that optical properties of the tissue

under study (i.e., µa and µs) are related to the slopes κr and κi of amplitude and phase as a

function of source-detector separation (ρ). For accurate recovery of tissue optical properties,

it is important to perform a calibration procedure (described in detail in Sec. 3.3.1) of ampli-
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tude and phase data. Phantom calibration was performed at the beginning of each subject

measurement, and the calibration coefficients obtained therein were applied to the data col-

lected from that subject to account for differential tissue-fiber coupling. Once calibrated,

κr and κi were estimated by performing a linear fit of log(ρ2A(ρ)) and φ as a function of

source-detector separation (ρ), as per Eqs. 2.14 and 2.15 in Sec. 2.4. Thes estimates were

then used with Eqs. 2.18 and 2.19 to calculate the tissue optical properties µa and µs at both

wavelengths.

Background absorption (due to water ) was corrected using Eq. 2.3 before computing

time series of CHbO and CHbR over the experiment duration (Eq. 2.2). Finally, as in Sec. 3.2,

stimulus induced changes in hemoglobin concentrations, ∆CHbO and ∆CHbR from all pre-

sented trials were averaged to arrive at the results for each subject. Note that unlike with

the modified Beer-Lambert analysis, the multi-distance photon diffusion approach estimates

1 pair of hemodynamic curves for four source-detector separations.

3.3.1 Calibration

Estimation of optical properties with FD-DOS requires measurement of real and imagi-

nary parts of the DPDW wave vector, from measurements of amplitude and phase at different

Table 3.2: Optical properties of ISS phantom in cm−1

Wavelength µa µ′s

830 nm 0.154 4.4

690 nm 0.158 5.2
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source-detector separations. In Sec. 2.4, we described the relations Eq. 2.14 and Eq. 2.15

for amplitude and phase of the detected light intensity with respect to the source intensity

modulation [1]. These equations are used for estimating the two unknowns quantities, i.e,

the tissue absorption (µa) and reduced scattering coefficient (µ′s). Practically, two additional

unknowns account for the variations in the light coupling between the tissue surface and the

source and/or detector. In order for this procedure to yield accurate tissue optical properties,

it is important to maintain constant/consistent light coupling efficiencies at each fiber-tissue

interface. Since this is hard to achieve experimentally, it is common to perform a calibration

procedure using a tissue simulating phantom of known optical properties [9, 3]. For the cali-

bration process, we used two tissue simulating phantoms with known optical properties (µa)

and (µ′s). The first calibration phantom used was manufactured by ISS Inc. and the second

phantom used was manufactured by the INO Inc. (Biomimic, Institut National d’Optique).

The optical properties of these phantoms are given in Tabs. 3.2 and 3.3.

Table 3.3: Optical properties of Biomimic phantom in cm−1

Wavelength µa µ′s

830 nm 2.183 2.866

690 nm 1.610 2.081

Briefly, we compare the measured amplitude and phase as a function of source-detector

separation from the tissue phantom, to the values expected from a homogeneous semi-infinite

FD-DOS solution (Eq. 2.14 and 2.15) for the phantom optical properties. The effect of the

coupling coefficients occurring in a phantom measurement on the measured intensity can be
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written as [3]:

Iij = IPMij exp(−iφPMij )

= CAI
PT (ρij) exp

(
−iCc,P θPT (ρij)

)
(3.2)

where IPMij and φPMij are the measured intensity and phase on the phantom for ith source

and jth detector respectively with a source detector separation of ρ. IPT (ρij) ,θPT (ρij) in

turn are the amplitude and phase expected from a homogeneous semi-infinite solution to the

photon diffusion equation for the given phantom optical properties. CA , Cφ are the terms

accounting for the effect of coupling coefficients of ith source and jth detector on measured

amplitude |IPMij | and measured phase φPMij respectively. Thus, the amplitude and phase

coupling coefficients can be written as:

Cc,I =
|IPMij |
IPT (ρij)

(3.3)

Cc,φ = θPM(ρij)− θPT (ρij) (3.4)

Assuming that the light coupling coefficients present in the tissue measurement are same

for the phantom, the measured amplitude |ITMij (ρij)| and phase θTM(ρij) obtained from the

tissue can be appropriately corrected using the estimated calibration coefficients

|ITMij (ρij)| = Cc,I |ITT (ρij)| (3.5)

θTM(ρij) = Cc,φ + θTT (ρij) (3.6)

where |ITTij (ρij| and θTT (ρij) are the corrected calculated amplitude and phase for tissue

measurements.

Now the optical properties of the tissue can be retrieved from the corrected amplitude

and phase by fitting these values to the values obtained from the photon diffusion model for all
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Figure 3.8: A representative graph for before and after calibration values of log(ρ2A(ρ)) and Phase.
(a) log(ρ2A(ρ)) versus source detector separation ρ for detector 4. (b) Phase φ(ρ) versus the source
detector separation rho. The crosses are the values of the measured amplitude. The circles represent
the values after applying calibration. The slopes of the lines joining the calibrated values give κr
and κi.

separations between sources and detectors. A representative figure showing this calibration

by fitting is shown in Fig. 3.8. An advantage of using the above approach for calibrating the

FD DOS measurements is the ability to use a diverse range of source detector separations.

An important caveat however is the assumption that coupling coefficients for both tissue and

tissue simulating phantom are similar. Of course, this assumption may be invalidated in the

presence of the hair follicles underneath the skin, and factors such as skin hydration, and

tissue curvature. Nevertheless, the calibration procedure is an effective way of computing

probe coupling coefficients and obtain accurate estimates of tissue optical properties.

To validate the calibration process, we utilized one of the phantoms for the calibration

process (Tab. 3.2), and verified it by estimating the optical properties on the other (Tab. 3.3).

Tab. 3.4 summarizes the errors in optical properties retrieved from the Biomimic phantom

(Tab. 3.3) based on the coupling coefficients estimated using the ISS phantom (Tab. 3.2). On
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average, the absolute error in measured optical properties was 8.6% and 19% in µa, and9.7%

and 6% in µ′s at 830 nm and 690 nm respectively.

Table 3.4: Percentage errors in estimates of µa and µ′s from measurement of tissue simulating
phantom (Tab. 3.3). Data was calibrated with measurements from (Tab. 3.2)

Detector µa(830 nm) µa(690 nm) µ′s(830 nm) µ′s(690 nm)

A 0.24 -14.91 -1.06 -6.38

B -1.01 -17.68 -1.94 -1.38

C -3.95 -16.24 4.02 -2.27

D -2.71 -17.12 1.80 -0.65

E -2.65 -21.38 -0.72 2.50

F -6.75 -21.39 7.36 3.65

G -8.87 -22.21 -1.38 1.85

H -5.41 -19.88 3.65 -1.52
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CHAPTER 4: RESULTS AND DISCUSSION

4.1 Hemodynamic Changes due to Auditory Stimulation Measured with Mod-

ified Beer-Lambert Analysis

The results from Modified Beer-Lambert analysis of functional activation of the audi-

tory cortex is summarized in this section. Recall that the Modified Beer-Lambert analysis

estimates changes in concentrations of oxygenated hemoglobin (∆CHbO) and deoxygenated

hemoglobin (∆CHbR) from optical intensity measurements at each source-detector separa-

tion. Hemodynamic responses were averaged across all 9 subjects for both stimuli - Broad-

band noise and 1000 Hz Pure-tone. As previously described in Sec. 3.1.3, the fiber optic

probe manifold was positioned such that the sources were above the auditory cortex (T4),

as shown in Fig. 4.1. The individual source-detector separations are given in table 3.1. Ta-

bles 4.1 and 4.2 compare the average hemodynamic response (i.e., concentration changes

∆CHbO and ∆CHbR in µM) for each source-detector pair, and for both auditory stimuli.

Thus, we can measure and compare the auditory hemodynamic response from 8 (detectors)

× 4 (sources), encompassing the entire auditory cortex. The average response was estimated

as the median of the concentration changes during auditory stimulation, i.e., between time

t = 2 s and t = 10 s. This ensures that the average estimates account for the rise time of

functional hemodynamic changes. The median concentration change across 9 subjects, and

the variance therein are reported. The statistical significance of the response was evaluated
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Figure 4.1: Schematic representing positioning of sources and detectors placed over the auditory
cortex. The red circles at the center represent sources, placed above the Tragus and on the T4
position of the right ear. The yellow circles indicate the position of the detectors behind the ear
and towards the forehead.

for each source-detector pair. Briefly, a non-parametric Wilcoxon signed rank tests were per-

formed against the hypothesis that the concentration changes during functional activation

were > 0. Statistically significant responses (p < 0.05) are marked with a # in Tabs. 4.1

and 4.2.

From the Tab. 4.1, we note that in general the concentration of oxygenated hemoglobin

(∆CHbO) increases due to functional activation. Further, in comparison to the results

in Tab. 4.2, we observe that there is a greater change in concentration of oxygenated

hemoglobin(∆CHbO), compared to deoxygenated hemoglobin (∆CHbR). On average, ∆CHbO

increases by ∼ 0.1 − 0.2µM due to functional activation. As expected, the response to

auditory stimulation is not homogeneous across all source-detector separations. A highest

∆CHbO response of 0.241 µM was observed during the presentation of the pure-tone stimulus,

in Detector B and source 3. Further, only responses from source-detector pairs A− 2, A− 3,

B − 2, B − 3, B − 4, C − 2, D − 1, E − 3and F − 1 were found to be statistically signif-

icant. For Broadband noise stimulus, a highest ∆CHbO concentration change of 0.196 µ M

was observed in Detector H and source 1. Some source-detector pairs showed a statistically

significant responses for ∆CHbR for pure-tone stimulus.
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Table 4.1: Summary of average change in CHbO (µM) due to auditory stimulation estimated using
the Modified Beer-Lambert approach. Statistically significant responses are marked with a #.

Detector Stimuli Source 1 Source 2 Source 3 Source 4

A

pure-tone 0.005± 0.048 0.071± 0.082# 0.115± 0.074# 0.038± 0.077

BBN −0.029± 0.031 0.022± 0.065 0.061± 0.102 0.047± 0.061

B

pure-tone 0.011± 0.072 0.135± 0.116# 0.141± 0.110# 0.053± 0.084#

BBN −0.029± 0.071 −0.019± 0.051 0.021± 0.054 0.026± 0.067

C

pure-tone 0.045± 0.077 0.077± 0.086# 0.032± 0.118 0.051± 0.105

BBN 0.074± 0.101 0.015± 0.088 0.036± 0.053 −0.015± 0.088

D

pure-tone 0.136± 0.112# 0.061± 0.149 0.046± 0.152 0.066± 0.085

BBN 0.002± 0.102 0.095± 0.072 0.077± 0.066 0.005± 0.072

E

pure-tone 0.003± 0.046 0.015± 0.037 0.030± 0.034# 0.015± 0.035

BBN 0.006± 0.053 −0.018± 0.067 −0.004± 0.073 0.002± 0.063

F

pure-tone −0.052± 0.048# 0.015± 0.038 0.030± 0.034 0.035± 0.015

BBN −0.028± 0.049 −0.012± 0.092 −0.024± 0.066 0.071± 0.086

G

pure-tone 0.042± 0.063 0.054± 0.077 0.035± 0.152 −0.051± 0.118

BBN −0.036± 0.066 −0.035± 0.075 −0.067± 0.076 0.049± 0.077

H

pure-tone 0.051± 0.041 0.034± 0.069 0.060± 0.088 −0.042± 0.075

BBN −0.104± 0.090 −0.076± 0.072 −0.098± 0.066 0.085± 0.075
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Table 4.2: Summary of average change in CHbR (µM) due to auditory stimulation estimated using
the Modified Beer-Lambert approach.

Detector Stimuli Source 1 Source 2 Source 3 Source 4

A

pure-tone 0.014± 0.0.035 −0.007± 0.011 −0.0030± 0.022 0.030± 0.07528#

BBN −0.013± 0.26 −0.020± 0.027 −0.006± 0.028 −0.020± 0.032

B

pure-tone 0.011± 0.028 −0.025± 0.027 −0.018± 0.033 0.021± 0.052

BBN −0.002± 0.034 −0.015± 0.029 −0.004± 0.024 −0.003± 0.036

C

pure-tone 0.006± 0.041 0.034± 0.069 −0.031± 0.054 −0.004± 0.046

BBN 0.020± 0.048 0.041± 0.029 0.026± 0.031 0.020± 0.053

D

pure-tone 0.004± 0.070 0.0020± 0.038 0.013± 0.040 0.025± 0.034

BBN 0.019± 0.071 0.021± 0.041 0.030± 0.047 0.022± 0.048

E

pure-tone 0.047± 0.017# 0.020± 0.014# 0.011± 0.018 0.049± 0.037#

BBN −0.003± 0.027 0.004± 0.029 0.017± 0.014 0.005± 0.025

F

pure-tone 0.027± 0.025 0.013± 0.010# 0.008± 0.025 0.021± 0.024#

BBN 0.001± 0.030 −0.001± 0.025 −0.006± 0.016 −0.017± 0.026

G

pure-tone 0.024± 0.016# 0.015± 0.013 0.014± 0.015 −0.033± 0.038

BBN 0.001± 0.051 0.015± 0.023 0.016± 0.022 −0.017± 0.026

H

pure-tone 0.008± 0.038 0.018± 0.015 0.015± 0.023 0.039± 0.038#

BBN −0.023± 0.060 0.015± 0.024 0.019± 0.026 0.023± 0.026
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Figure 4.2: Placement of sources and detectors for the hemodynamic responses shown in Fig. 4.3.

4.1.1 Functional Activation Responses for Pure-tone Stimulus

We elaborate on the hemodynamic response due to functional activation with a pure-

tone stimulus here. Fig. 4.3 shows the time courses of change in concentration of oxygenated

and deoxygenated hemoglobin from the detectors towards the back of the head (i.e., A, B, E,

and F ) for all four source positions. The sources are placed such that T4 region lies between

the second and third source positions and two pairs of detectors are on either side of the T4

position. The positioning of these sources and detectors are highlighted in Fig. 4.2. Each

panel of Fig. 4.3 displays the median (across all subjects) response of oxygenated hemoglobin

(∆CHbO; solid red lines) and deoxygenated hemoglobin (∆CHbR; solid blue lines). The red

and blue shaded regions highlight the upper and lower quartiles of the response. Vertical

dotted lines represent the start and end of the stimulus.

From the graphs in Fig. 4.3 we observe that the concentration change during activation

is prominent in Detectors A and B, across the sources 2, 3, and 4. There is approximately

an increase of 0.2 µM in the concentration of the oxygenated hemoglobin. A small increase

can be seen across the Detectors E and F at the third source position. These results suggest

that region of activation is closer to the detectors A and B for pure-tone stimulus.
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Figure 4.3: Changes in concentration of HbO (red) and HbR (blue) observed across the detectors A,
B, E and F from all 4 source as shown in Fig. 4.2, for a pure-tone stimulus: Modified Beer-Lambert
analysis. Solid lines indicate median responses from 9 subjects, and shaded regions highlight upper
and lower quartile of responses. Vertical dotted lines represent the start and end time of the
stimulus.

In a similar way, Fig. 4.5 shows the time courses of change in concentration of oxy-

genated and deoxygenated hemoglobin from the detectors towards the front of the head (i.e.,
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Figure 4.4: Position of the sources and detectors for the hemodynamic responses shown in Fig. 4.5.

C, D, G, and H) for all four source positions. The positioning of these sources and detectors

are highlighted in Fig. 4.4. Each panel of Fig. 4.5 displays the median (across all subjects)

response of oxygenated hemoglobin (∆CHbO; solid red lines) and deoxygenated hemoglobin

(∆CHbR; solid blue lines). The red and blue shaded regions highlight the upper and lower

quartiles of the response. Vertical dotted lines represent the start and end of the stimulus.

Fig. 4.5 shows a change in concentration of HbO across all detectors for sources 1, 2

and 3. The response at detectors C and detector G are greater compared to the detectors

D and F , likely because they are located closer to the T4 region.
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Figure 4.5: Changes in concentration of HbO (red) and HbR (blue) observed across the detectors C,
D, G and H from all 4 source as shown in Fig. 4.4, for a pure-tone stimulus: Modified Beer-Lambert
analysis. Solid lines indicate median responses from 9 subjects, and shaded regions highlight upper
and lower quartile of responses. Vertical dotted lines represent the start and end time of the
stimulus.
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4.1.2 Functional Activation Responses for Broadband Stimulus

Fig. 4.6 and 4.7 show the changes in concetration of oxygenated and deoxygenated

hemoglobin for detectors A, B, E & F , and C, D, G & H respectively, for all 4 source

positions. In this case, 70 dB SPL Broadband noise was presented. The positioning of

sources and detectors are highlighted in the schematics Fig. 4.2 and Fig. 4.4 respectively.

As before, the median changes in concentration of HbO and HbR are indicated in solid

red and blue lines respectively. Shaded regions indicate upper and lower quantiles of the

response, and vertical dotted lines indicate period of activation. From these graphs, we

note a concentration change across all the detectors for sources 2, 3 and 4. This indicates a

larger activation area, consistent with the physiological expectation for stimulation from a

Broadband sound.
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Figure 4.6: Changes in concentration of HbO (red) and HbR (blue) observed across the detectors
A, B, E and F from all 4 source as shown in Fig. 4.2, for a broadband noise (70 dB SPL): Modified
Beer-Lambert analysis. Solid lines indicate median responses from 9 subjects, and shaded regions
highlight upper and lower quartile of responses. Vertical dotted lines represent the start and end
time of the stimulus.
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Figure 4.7: Changes in concentration of HbO (red) and HbR (blue) observed across the detectors
C, D, G and H from all 4 source as shown in Fig. 4.4, for a broadband noise (70 dB SPL): Modified
Beer-Lambert analysis. Solid lines indicate median responses from 9 subjects, and shaded regions
highlight upper and lower quartile of responses. Vertical dotted lines represent the start and end
time of the stimulus.
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4.2 Hemodynamic Changes due to Auditory Stimulation Measured with FD-

NIRS Analysis

Tab. 4.3 shows the average change in concentration of CHbO and CHbR from all 8 de-

tectors using the multi-distance FD-NIRS method 2.4. The average response was estimated

as the median of the concentration changes during auditory stimulation, i.e., between time

t = 2 s and t = 10 s. Recall that the multi-distance FD-NIRS approach analyzes opti-

cal measurements obtained from all sources to arrive at a single time course per detector.

For FD-NIRS analysis, results from three subjects were excluded. One subject’s data was

unusable due to large errors during the calibration process. Data from two more subjects

were excluded because of saturation warnings during the experiment. Since FD-NIRS mea-

surements require reliable data from all source-detector positions, analysis of the saturated

measurements yielded non-physiological functional activation responses. Thus, results shown

in this section are averaged responses across 6 subjects. From Tab. 4.3 we observe that for

pure-tone stimulus, ∆CHbO increases to a highest value of 0.785 µM and ∆CHbR decreases

to a minimum of 0.051 µM over the span of 10 s stimulus presentation. Similarly during

the presentation of Broadband noise, ∆CHbO increased to a highest value of 0.373 µM and

∆CHbO decreased to a minimum of 0.051 µM.

Figs. 4.8 and 4.9 show the changes in the concentration of ∆CHbO and ∆CHbR from

all detectors for pure-tone and Broadband noise respectively. As before, the median changes

in concentration of HbO and HbR are indicated in solid red and blue lines respectively.

Shaded regions indicate upper and lower quantiles of the response, and vertical dotted lines

indicate period of activation. For both stimuli, measurements from the farthest detectors

46



www.manaraa.com

(i.e., A, E, D, and H) were noisy and generally unreliable. This is likely due to reduced

signal intensities from the longer source-detector separations. Moderate, but non statistically

significant (Wilcoxon signed rank test) increases in ∆CHbO were observed in detector B for

pure-tone stimulus, and detectors C, F and G for Broadband noise.

Table 4.3: Summary of average change in CHbO (µM) and CHbR (µM) due to auditory
stimulation estimated using the multi-distance FD-NIRS approach.

Detector

Pure-tone BBN

HbO HbR HbO HbR

A −0.401± 0.384 0.009± 0.288 0.274± 0.099 0.201± 0.104

B 0.113± 0.156 0.092± 0.162 0.023± 0.131 0.020± 0.038

C −0.085± 0.230 0.037± 0.3080 −0.002± 0.161 −0.015± 0.096

D −0.031± 0.358 0.012± 0.127 −0.067± 0.275 0.034± 0.100

E 0.178± 0.061 −0.153± 0.224 0.104± 0.179 0.013± 0.090

F 0.034± 0.064 −0.015± 0.036 0.120± 0.013 0.011± 0.054

G 0.109± 0.102 −0.042± 0.090 0.050± 0.117 −0.045± 0.006

H −0.018± 0.124 0.046± 0.106 −0.104± 0.182 0.106± 0.126
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Figure 4.8: Changes in concentration of HbO (red) and HbR (blue) observed across 8 detectors
for a 1000 Hz pure-tone: FD-NIRS analysis. Solid lines indicate median responses from 6 subjects,
and shaded regions highlight upper and lower quartile of responses. Vertical dotted lines represent
the start and end time of the stimulus.
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Figure 4.9: Changes in concentration of HbO (red) and HbR (blue) observed across 8 detectors for
a broadband noise (70 dB SPL): FD-NIRS analysis. Solid lines indicate median responses from 6
subjects, and shaded regions highlight upper and lower quartile of responses. Vertical dotted lines
represent the start and end time of the stimulus.

4.3 Discussion

The overall goal of this thesis is to verify if the multi-distance FD-NIRS method can

identify/measure hemodynamic changes due to functional activation, and compare results
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therein to the conventional CW-NIRS (Modified Beer-Lambert law) approach. To effect this

comparison, we compared the hemodynamic responses (∆CHbO and ∆CHbR) obtained via

the frequency domain method with the ‘best’ and ‘average’ hemodynamic responses obtained

via Modified Beer-Lambert analysis. Here, ‘best’ response refers to the source-detector

separation that provides the clearest/largest hemodynamic response. ‘Average’ response

refers to the average of hemodynamic responses from all sources for a given detector. Since

they use measurements from all sources, the ‘average’ response should be similar to the

results obtained via the FD-NIRS method.

Tabs. 4.4 and 4.5 compare respectively the average HbO and HbR functional activation

response from all detectors for both auditory stimuli. Here, we observe that the median

responses are highest for the ‘best’ single distance measurements. Results from the average

response of all sources (modified Beer-Lambert) were similar to the responses obtained from

FD-NIRS. For pure-tone, the highest FD-NIRS HbO response was observed in detectors B

and E, whereas the highest HbO response was observed in detector B for both ‘best’ and

‘average’ single distance measurements. For Broadband noise, the highest FD-NIRS HbO

response was observed in detector A , whereas the highest HbO response was observed in

detectors F and H with the ‘best’ and ‘average’ single distance measurements.
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Table 4.4: Summary of average change in CHbO (µM) due to auditory stimulation from the ‘best’
single-distance measurement (MBL), ‘average’ of all single-distance measurements (MBL), and

from multi-distance FD-NIRS approach, for both pure-tone and broadband noise.

Detector Stimulus Best separation Average change FD-NIRS

A

pure-tone 0.082± 0.071 0.079± 0.058 −0.401± 0.384

BBN 0.053± 0.079 0.030± 0.065 0.274± 0.099

B

pure-tone 0.135± 0.116 0.100± 0.075 0.113± 0.156

BBN 0.041± 0.062 0.012± 0.053 0.023± 0.131

C

pure-tone 0.032± 0.118 0.03± 0.108 −0.085± 0.23

BBN 0.018± 0.042 0.00± 0.064 −0.002± 0.161

D

pure-tone 0.046± 0.152 0.030± 0.132 −0.031± 0.358

BBN 0.061± 0.062 0.093± 0.080 −0.067± 0.275

E

pure-tone 0.015± 0.037 −0.002± 0.040 0.178± 0.061

BBN 0.012± 0.057 −0.003± 0.053 0.104± 0.179

F

pure-tone 0.015± 0.038 0.006± 0.021 0.034± 0.064

BBN 0.060± 0.084 0.001± 0.050 0.120± 0.013

G

pure-tone 0.035± 0.152 0.039± 0.093 0.109± 0.102

BBN 0.063± 0.064 0.043± 0.064 0.050± 0.117

H

pure-tone 0.060± 0.088 0.057± 0.059 0.018± 0.124

BBN 0.080± 0.062 0.099± 0.084 −0.104± 0.182
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Table 4.5: Summary of average change in CHbR (µM) due to auditory stimulation from the ‘best’
single-distance measurement (MBL), ‘average’ of all single-distance measurements (MBL), and

from multi-distance FD-NIRS approach, for both pure-tone and broadband noise.

Detector Stimulus Best separation Average change FD-NIRS

A

pure-tone −0.007± 0.011 −0.07± 0.011 0.09± 0.288

BBN −0.008± 0.042 −0.007± 0.021 0.201± 0.104

B

pure-tone −0.025± 0.027 0.014± 0.032 0.092± 0.162

BBN −0.010± 0.029 −0.010± 0.028 0.020± 0.038

C

pure-tone −0.031± 0.054 −0.017± 0.026 0.037± 0.308

BBN 0.023± 0.026 0.0250± 0.016 −0.015± 0.096

D

pure-tone 0.013± 0.040 0.016± 0.038 0.012± 0.127

BBN 0.027± 0.043 0.006± 0.051 0.034± 0.100

E

pure-tone 0.020± 0.014 0.031± 0.018 −0.153± 0.224

BBN 0.007± 0.016 0.003± 0.020 0.13± 0.090

F

pure-tone 0.0.013± 0.010 0.019± 0.022 −0.015± 0.036

BBN −0.016± 0.021 0.09± 0.12 0.011± 0.054

G

pure-tone 0.014± 0.015 0.020± 0.018 −0.042± 0.090

BBN 0.14± 0.019 0.008± 0.022 −0.045± 0.006

H

pure-tone 0.0015± 0.023 0.018± 0.024 0.046± 0.106

BBN 0.019± 0.025 0.017± 0.029 0.106± 0.126
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Figs. 4.10 and 4.11 show a comparison of hemodynamic responses from detectors closest

to the sources for pure-tone and Broadband noise stimuli. Each row represents the responses

from 4 detectors, i.e., B, F , C, and G. The columns represent three analysis methods

- ‘best’ single-distance CW-NIRS measurements, ‘average’ of all CW-NIRS measurements,

and ‘FD-NIRS’ measurements. Median concentration changes ∆CHbO and ∆CHbR curves

are represented as solid red and blue curves respectively. Shaded regions highlight upper

and lower quantiles, while vertical dotted lines indicate activation duration.

For pure-tone stimulus, detector B shows an observable and consistent change in con-

centration of HbO for the best single distance measurement (source 2). This response is

attenuated in both the averaged measurements and in FD-NIRS. The response from other

detectors are minimal. For Broadband noise, a good response is seen across the detectors B

and F for the best single distance case (source 4) and a moderate response across detectors

C and G (source 3). We observe that the responses from the FD-NIRS approach is more

noisy compared to the modified Beer-Lambert approach.
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Figure 4.10: Comparison of responses from the Modified Beer-Lambert analysis and the FD-NIRS
analysis for pure-tone stimulus. Each row represents the detector being analyzed. The first column
shows the best response observed across the detector for one single source-detector separation
(source 2 for detectors B and F , and source 3 for detectors C and G). The second column displays
the average response observed across all the sources for that detector, while the third column
displays FD-NIRS results. The position of these detectors is shown in Fig. 4.1. Solid red and blue
lines indicate medial HbO and HbR responses, shaded regions are upper and lower quantiles, and
dotted lines are stimulus duration.
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Figure 4.11: Comparison of responses from the Modified Beer-Lambert analysis and the FD-NIRS
analysis for broadband noise. Each row represents the detector being analyzed. The first column
shows the best response observed across the detector for one single source-detector separation
(source 4 for detectors B and F , and source 3 for detectors C and G). The second column displays
the average response observed across all the sources for that detector, while the third column
displays FD-NIRS results. The position of these detectors is shown in Fig. 4.1. Solid red and blue
lines indicate medial HbO and HbR responses, shaded regions are upper and lower quantiles, and
dotted lines are stimulus duration.
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From the results, we see that there is a large difference the ranges of different analysis

approaches. Previous studies of Chen et. al. [11] reported a maximum change in concentra-

tion of HbO of 0.4 µM. Wiggings et. al. [43] and Issa et. al. [27] reported a maximum change

of 0.1 µM. The results obtained here by the modified Beer-Lambert approach are consistent

with limited previous research. FD-NIRS analysis, show a higher measured concentration

changes of HbO, but with significantly higher noise in measurements.

To our knowledge, this is the first study to use the multi-distance frequency domain

method to record hemodynamic changes due to functional activation of the auditory cortex.

One of the reasons for this unconventional performance of the multi distance FD-NIRS

method could be due the analysis technique requiring measurements from several source-

detector pairs. Recall that a linear fit performed for the estimation of kr and ki values

(Fig. 4.12). With this analysis method, the tissue sampling volume of a single measurement

is larger than a single distance (CW-NIRS) measurement. Functional activation is related

to neuronal activity taking place in a specific region i.e., focal region of the brain rather

than i.e., global that occur over the entire brain (e.g., hypoxia). When we perform a linear

fit for the values of log(ρ2A(ρ)) and θ(ρ) to measure the κr and κi values, it is therefore

possible that the functional stimulation only effects changes at one or two source detector

separations, with minimal changes across the other separations (within noise). So, a linear

fit of such a local change may tend to suppress/underestimate the hemodynamic change

resulting in the loss of the response from the detector. From the Fig. 4.12, we can see the

possibility of suppression in activation measured at some source detector separations due the

linear fit performed. Thus, although the multi-distance FD-NIRS system has the advantage

of measuring the absolute concentrations of HbO and HbR, it is likely more beneficial to
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use this approach for conditions that involve global changes such as hypoxia or ischemia,

compared to the focal changes such as functional activation.

Figure 4.12: A linear fit being performed for four source detector separations, with a hypothetical
functional activation change at one separation. A linear fit could suppress/underestimate the
measurement at the second source detector separation in the (a.) amplitude and (b.) phase while
estimating κr and κi

4.3.1 Limitations and Sources of Error

We note several limitations that were present in our study.

4.3.1.1 Density of Hair Roots

Hair absorbs near infrared light, and has an effect of attenuating measured signals.

The amount of hair present, i.e., the density of the hair roots on the scalp, present between

the detector and scalp effected the measurements in a considerable way. In order to reduce

the impact of hair, the detector and the source positions were thoroughly checked each time

for the presence of hair. Efforts were made to brush/move hair away from the detector

fiber to ensure optimal fiber/scalp contact. We were able to recover good responses from

subjects having hair with low levels of dark pigment eumelanin (blonde hair) compared to

the subjects with darker hair. Despite these efforts, absorption of light by hair follicles was

unavoidable.
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4.3.1.2 Scalp and Fiber Coupling

To solve for the coupling, as mentioned in Sec. 3.3.1, calibration was performed using

two solid phantoms. Using the ISS phantom provided by ISS.inc as a reference phantom

we applied the calibration co efficients of ISS phantom to measure the optical properties of

the Biomimic phantom. If the optical properties recovered was within 20% expected values,

the same co-efficients were used to calibrate for the subject data. During the experiments,

one of the datasets had a large error (> 20%) in the calibration error measured, so this was

excluded from the frequency domain results.

4.3.1.3 Positioning of T4 on Scalp

Identifying and positioning the source over T4 on the scalp was important for comparing

measurements over all subjects. In order to accomplish this, measurements of the head were

made using a measuring tape, i.e., diameter of the head was measured, the distance from

Inion to Nasion, and from Right Tragus to Left Tragus was measured. T4was located by

calculating 10% of the distance from Right - Left Targus. Various layouts of probes were

tested for optimal probe contact, flexibility. The distances between the sources and detectors

in these designs were also optimized to track good responses.

4.3.1.4 Motion Artifact Correction

Motion artifacts (e.g., due to coughing) change the fiber-scalp coupling and location,

and could affect the estimated concentrations. The subjects were instructed to remain still

during the experiments and were asked to have as little movement as possible. Even after

taking necessary precautions the data had few major artifacts, therefore, a four point moving
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average filter was used to identify and remove trials that exhibit these effects. Nevertheless,

the presence of smaller artifacts will affect the fidelity of the data.

4.3.2 Future Work

One interesting result from this research is the experimental comparison of multi-

distance and single-distance analysis of optical functional activation measurements, which

suggests that focal changes in hemodynamics may be underestimated by multi-distance tech-

niques such as FD-NIRS. For further investigation and confirmation of this hypothesis, a

future direction of research would be to perform a numerical simulation of functional ac-

tivation (e.g., using NIRFAST[13]), and perform single- and multi-distance analysis of the

simulated data. Calculated responses from simulated data can be compared with simula-

tion parameters, and experimental results. One other future direction would be to extend

this study to include subjects with tinnitus to observe the trend of activation in them and

compare it with responses from the healthy subjects.
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CHAPTER 5: CONCLUSION

Functional stimulation of the auditory cortex was studied using Near-Infrared Spec-

troscopy. A comparison of the two types of optical analysis was performed. Multi-Distance

Frequency Domain analysis of the data yielded baseline measurements of oxygenated and de-

oxygenated hemoglobin, while single-distance Modified Beer-Lambert analysis yielded mea-

surements of changes in oxygenated and deoxygenated hemoglobin. Modified Beer-Lambert

analysis estimated larger changes in hemoglobin concentrations when compared to the Fre-

quency domain analysis. Results suggest that single distance analysis approaches may be

better suited to measure focal changes due to functional activation.
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